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~ppendix _I

Derivation of Two-pi-pulse and Zero-pi-pulse

by the Inverse Scattering Method

_____________Abstract:

The Inverse Scattering Method (ISM ) as applied to Self-

Induced Transparency (SIT) is reviewed. It is shown that the

- 
- - - ( Zakharov—shabat) scattering equations follow directly from

the two level system equations. The analytic continuation of

the Zakharov Shabat equations into the complex plane is inter-

preted by an analog: the excitation of a parametric oscillator

by sources growing exponentially in time. This model gives a

“physical feel” for the behavior of the eigenfunctions of the

scattering problem. The spatial invariance of the eigenvalues

is proven following a method outlined by Ablamovitz et al. (1974).

The 2w pulse and zero—pi pulse follow immediately and concisely

from the preceding analysis. It is shown that no zero-pi-like

solution exists with a spectrum centered of f the material line . 
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In troduc tion

The inverse scattering method (I.S.M.) is one of the very few

general methods of solution of a class of nonlinear differential

equations in one spatial dimension and time (Gardner et al., 1967 ;

Zakharov and Shabat , 1972; Whitham, 1974; Ablowitz et al., 1974a;

I:.amb, 1973). In the application of the I .S .M. a linear scattering

problem of quantum—mechanical nature is associated with the nonlinear

differential equation (Whitnam , 1974). The sought-for solution of

the nonlinear differential equation at the initial time t = 0 plays

the role of the scattering potential or “well” of the linear scat-

tering problem. The initial conditions of the problem to be solved

prescribe the transmission and reflection coefficients of the linear

scattering problem from which the scattering “well” may be determined

by standard techniques of (inverse) scattering theory. The evolution

- - in time of the scattering problem , which may take several forms

(Ahlowitz et al., 1974a ,b), then prescribes the evolution in time

of the solution of the nonlinear equation—— or alternately—- the form

of the nonlinear- differential equation associated .with this particular

scattering problem (see Fig. 2).

In 1973 Lamb showed (Lamb , 1973) how one may associate wi th the

equations of self—induced transparency (S.I.T.) one of the standard

equations of the I.S.M., the Zakharov—Shabat equations (Zakharov and

Shabat , 1972). He proceeded through a set of variable transformations

with, no apparent physical interpretation. In fact , one of the in-

triguing unsolved probl~ ms of the I.S.M. is the development of a 

— - 
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procedure to find the scattering problem associated with a par ticul ar

d i f ferent ia l  equation .

In many cases the scattering problem of quantum—mechanical char-

acter will have no physical interpretation. It is to be expected ,

however, that in those cases in which the physics underlying the

nonlinear differential equation is based on quantum mechanics the

associated scattering problem must have a direct physical meaning .

In the case of the Josephson transmission line and S.I.T., this has

been pointed out by McLaughlin and Corones (McLaughlin and Corones ,

1974). The physical interpretation of the scatter ing probl em ob-

tained after Lamb had reduced the S.I.T. problem to one amenable to

the inverse scattering method is but one example of various develop-

ments presented by different authors in the course of time. The

present author attempted to gain an understanding of the I.S.M. by

uncovering physical interpretations for the mathematical steps. Ev en

though most of the specifics have appeared in the literature (Gardner

et al., 1967; Zakharov and Shabat, 1972; Whitham , 1974; Ablowitz et

al., 1974a,b; Lamb, 197 3 ; McLaughlin and Corones, 1974; Ablowitz et

al. 1973; Faddeyev , 1962), this paper may serve as a guide for the

physically inclined to an important mathematical method .

The Zakharov—Shabat equations written as differential equations

in normalized time it with the electric field ~ - ( t , z)  as the

scattering “well” define the linear scattering problem associated

with S.I.T. The spatial variable z plays the role of a parameter.

In Section I we show the direct connection between the Zakharov-

Shabat cquat i.on~; and t-he eqila t j ~~n ’:  of t h ’  t w , — 1  t ’vol ~~~~~~~ !~ t

L ~~~~~~~
— ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
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acting with the electric field i n- S . I . T.

The nature of the solutions to the Zakharov—Sha ba t equations

m a y  be anticipated by recognizing their similarity with a well

known physical problem: the parametric interaction of two waves

via a nonlinear medium excited by a pump wave (Yariv, 1976). This

is done in Section II. Ira particular , it is known that “unstable”

solutiorts growing in time are encountered in parametric interactions.

This f a ct  may be used to predict the location of the eigenvalues

of the Zakharov Shabat equations in the complex plane.

The exploration in Section III of the behavior of the Zakharov-

Shabat equation in the complex plane leads directly to an equation

for those solutions of the Zakharov-Shabat equat ions that correspond

to a ref lect ion—free well , and the shape of the well.

In Section IV we show that the assumption of independence of

z of the eigenvalues of the Zakharov—Shabat equations leads to a

form of the Maxwell-B].och equations of S.I.T. In Section V we

obtain the 2w-pulse and zero-it pulse solutions.
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I. The Zakharov—Shabat Equations as the Ecluations of the Two-

Level Systems

The Zakharov—Shabat equations are central to the inverse

scattering method appl ied to self induced transparency. In this

section we review briefly the equations of a two level system

excited by an E—field and show that the resulting equations are

equivalent to the Zakharov—Shaba t equations (Zakharov and Shabat ,

1972) arrived at by Lamb (Lamb, 1973).

In the slow envelope approximation , the wave equation for the

electric field envelope ~(x, t) of a plane wave propagating in

the x—direction is in mks units (compare (Lamb, 1973))

(1.1)~x c~~~t 2 c c

where w is the “carrier ” frequency , c the speed of light , ~

the dielectric constant, and P the polarization in the medium .

P and ~ are parallel to each other and transverse to the x-

direction. The polarization of the medium is obtained from the

analysis of two level systems with a distribution of energy-level

Spacings. Denote the amplitude of the wave function of the upper

level (1) by a1, that of the lower level (2) by a 2 . One may

write down two differential equations for the ampl itudes a1 and

a 2 as Coupled by the ~—fie1d (Vuylstcke , 1960). Factorinj out
the natural time cLeperidences and retaining only the slowly time
vdrying portions of the var t I 1 1 ( ’~~, Of lC  I I ~~~F
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a1 • p12 ~~~~ a~ 
(1.2)

= ~~ . ~~* • ~* e~~
6
~ a 

(1.3)
~ri

where 6 — w12, and is the matrix element between the

two levels. If we define

-

~~~~
2 — 

-

a1 e v1 (1.4)

+~~!~~2 —a2 e ~~v2 (1.5)

we obtain

dv1 E . pa .)
— + i — v1 i v 2 ( 1.6)
dt 2 h

dv2 6 E * .p ~2 
—

— — i — v2 = i — - V1. (1.7)
dt 

- 
2

These are already the Zakharov-Shabat equations, except for a

normalization. The density matr ix p is the statistical average

of the products of the amplitudes a1, a 2 or v1, V2 and their

- - 
- 

~~~~~~~~~~~~~~~~
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complex conjugates. Since we are dealing here with a pure state

(no collisions) no statistical average need be performed .

= v1 v~ *. (1.8)

The positive frequency portion of the polarization P is g iven

by

P < N 1  P 12> = N ~ 21<v1v 2*> (1 9)

where N is the particle density and the brackets indicate an

average over all two-level systems. One obtains from (1,1) and

(1.11) by dot-multiplication of both sides by ~12/i1%

c a ~l2 a • E 
- *— — - + - ________ — > (1.10)~~2 3x ih Q2

~t

where

2 
________

(1.11)2 f~e

The equation for the electr ic field (1.10) completes the
sysiem of equations; the solution of the Zakha rov— Sha bat o u ~ttio~~

L - -—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—==
~~~~
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appears directly as a drive in the equation of the field . The

system of equations is nonlinear in that the drive is nonlinear

*3.fl V1, V
2

Through the use of the normalized variables

2~ 12 • E
___ — 2~~~~ 6/~ihc~

z c ~x,ic,

the equations (1.6), (1.7) and (1.10) assume the form

= <2v 1v 2~ > (1.12)
az -

av1 1
— + iç v1 = — ~~ V

2 
(1.13)

2 -

av
(1. 14)

These equations are already in one of the standard forms of

inverse scattering theory. McLaughlin and Corones ( 1974) have

pointed out the relation between the linear (Zakharov-Shabat)

problem and the quantum mechanical equations of the Josephson

_ _ _ _ _ _ _ _  

—
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junction. They also touched on the problem of S.I.T. without

making the connection of the V ’s with the wave function ampli-
tudes.

For later reference , and to make connection with the Bloch

equations , we also list the differential equations for the density

matrix elements ( 1.8) . They follow directly from (1 .6)  and ( 1 .7)

dp12 + i6p12 = 
- 
l~ ( p 11 — p22 ) (1.15)

dt iii

dt ~~~~ 
— = — 2 ~l2 

— 

i4’•i 
(1.16)

After introduction of the variable it and the def init ions

A E 2p 12 
= 2v1v2 *

N E p 11 — p 22

one obtains the normalized Bloch equations:

+ 2i~ A = (1.17)
at

= — ~:. ( i ~~*~~ + t A * ) .  (1.18)
at 2

_____________ ______________ ~~~~~~~~~~~~~~~~~
---—

~~~~~ ~~~-—- -~~~~~~~ -~~~~~~~~__________  - ~~~~~~ -—---- -
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Lamb ( 1973) used the Bloch equations, and the field equation

<A> - (1.19)
az

as the defining equation of S.I.T. Lamb had to go through a series

of transformations to derive the Zakharov—Shabat equations. our

way of deriving the equations shows , much more simply, that the

Bloch equations are implied by the Zakharov—Shabat equations. 

-
~~~~~~

- - -  — -- - -
- . 

- 
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II.  The Scattering Problem

We have shown that the nonlinear self induced transparency

equation is cast naturally in terms of a set of linear differ-

ential equations for the amplitudes of the wave functions of the

upper and lower levels coupled by the electric field . These were

the equations of Zakharov arid Shabat (1972) central to their formu-

lation of the inverse scattering problem for the nonlinear Schroe—

dinger equation and derived by Lamb (1973) from the densi ty ma tr ix

equations of the two level system by a set of variable transforma-

tions. In this section we shall elaborate on the significance of

the Zakharov-Shabat equations.

We consider them to be a set of equations of mode coupling
in space, treating it as if it were the distance coordinate , ~

the propagation constant (c is real by definition); the amplitudes

and are then wave amplitudes. The function - ~.( -r ) plays

the role of the coupling coeff icient. In the absence of an C—
field , 

-

v1~~~ e x p — i C T  (2.1)

and

v 2 exp + i~ -r .  (2.2)

T~e i~~ V(  V
1 

l)r(~~~)q at- t --s in ihe — t  direction , Lh~ wave v i i

L __________ -~~~~~~~ - ~~
-
~~~~

- --  ~~~~~~~~ : --~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~ ~~ - -- -—— -
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the +t direction (assuming the physicist ’s definition of phase-

delay as represented by the factor exp iCt (C > 0)). The ampli-

tudes ~nd v2 are functions of C and T. Consider briefly

the Fcurier transform

dC e~~~
’ v1(C, i t )  = V1(y, it ) .  (2 .3)

If C is taken to be a propagation constant, C = ~/u with u

the phase veloc ity of the uncoupled wave , w the frequency, then

y may be interpreted as a time variable (y = Ut). This further

interpretation endows the waves v1 and v 2 ‘with dispersion-free

propagation at group velocity u , in the absence of t. The

original self—induced transparency problem involving in teractions

of electromagnetic pul ses with the nonlinear medium requ ires that

~ (t) has to vanish at l it i ~~- 
~~~~. Hence , equations (1.13) and (1.14)

describe coupling of waves in an interaction reg ion extending from
-~~ < it < +oo , with vanishin g interaction in the l imi t l i t i  -

~

In the region where ~~. ~ 0, the forward and backward waves

are coupled. The coupling is lossless in the sense that (for real C)

~~~~
— ( 1v 1(C , i t)  2 + 1v 2 (c , i t)  J 2 ) = 0 (2 .4 )

as can be demonstrated easily from Eqs. (1.13) and (1.14). In

~



(2 .4)  waves (1) and ( 2 )  may be assigned powers 1v1(c , i t)  1 2  and

1v2(C, i t)  2
. According to (2.4), both waves carry power in the

same direction-- say the +t direction. Because they hav e oppo-

sitely directed group velocities, their energies must be of oppo-

site sign (Pierce , 1974).

The concept of negative small signal energy is widely used

in plasma physics (Sturrock , 1961). Negative energy commonly

occurs in energy conservation princ iples derived from the linear ized

equations of motion of a nonlinear system which contains an ener gy

“reservoir ” (such as the kinetic energy of a moving plasma or an

electron beam (Pierce , 1 9 7 4 ) ) .  Excitation of a wave (usually a

socalled slow wave (Sturrock , 1961)) may lower - the overall energy

of the system, a fact that manifests itself in terms of a negative

energy attributed to the wave.- The energy is quadratic in the

- - excitation amplitude of the wave. If a negative energy-wave is

coupled to a positive energy wave, both wave amplitudes may grow.

The growth of positive energy is balanced by the growth of the

negative energy,  net smal l signal energy is conserved . One example

of such a system is the Backward-Wave oscillator (Kleen , 1958).

More familiar may be the example of parametric interaction

(Yariv, 1976) of two waves of frequencies w,~ and with a

pump wave of frequency w~ , so that + = w~ . The phase

• matching condition of the (colinear) propagation vectors and

Ic 2 is then = + R2. In the steady state , when phase ma tching

is not realized, one may define

- 

- -
~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~

- ~~~~~ —-~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~---—-—.--
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The equations of parametric coupling between the two waves as a

func tion of the spatial coordina te ( i t )  are of the form of
(1.13) and (1.14) when the “fast” spatial variations of the waves

are removed and only the Slowly varying variations of Itenvelopes~

are considered. The energy densities must be reinterpreted as

-photon number densities, the power flows as photon number flows

and energy conservation as photon number conservation. To be

more specific , in a parametric process of the type where a pump

pho ton produces a “ signal” photon at frequency w1 and an

“idler ” photon at frequency w2, the number of signal photon s

generated either spontaneously, or by induced emission , must be

equa l to the number of idler photons. The wave amplitudes, v1
and v2 may be so normalized that ~v~j2 and lv 2V are pro-

portional to the number of photons per unit length in the inter-

acting wave (1) and (2). Then (with it taken as the distance

variable)

_ IV l I ± ~~~~IV 2 I _ 0
a t

are the Manley Rowe conservation relations applied to this para-

metric process (Manley and Rowe, 1959; Weiss , 1957). A parametric

instability occur s with the + sign in the above equation , when

the group velocities of waves (1) and (2 )  are oppositely directed.

The waves v1 and v2 have further properties somewhat 

=~~~~ ---- --- 
~~ - — ~~~~~~~~~~~~~ - 

‘ — —
~~~~~~

—- -—-
~~

—
~~~— — — -~~~~~ 
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-——
~~~- --~~ - -



-~~----~~~~~~~~~~~~~~~~~~~~~~~ 

82

analogous to lossless coupling of electromagnetic waves that obey

reciprocity relations. Indeed , f rom (1.13) and (1.14 ) it is

easily shown that , given a solution (f is treated as a column

matrix of components f1 and f 2) -

f 

-

then

~~~~~~~~

_f
1* -

is also a solution for the same ~ (if ~ is real) .  Further ,

these two solutions are physically different. Indeed, have f

describe the coupling of wave v2 to v1 via ~~( t)  with boundary
conditions as indicated schematically in Fig. 25a. The solution

? is the one shown in Fig. 25b. The function f in relation to

f is like the time reversed solution of electromagnetic wav es
used to demonstrate reciprocity.

One may generalize ( 2 . 4 )  to show conservation of “cross power ” ,

i.e. prove the conservation law

~~~~~~~ 

~~1g1* + f2g2*) = 0 (2 .5)

where f and g are any two solutions of (1.13) and (l.l~~). Usinq

— —-~~~~ 
—.-~~~~
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the proper ty that 
- 

-

-

g =
_g

1*

is a solution , if g is one , ( 2 . 5 )  becomes

-
~~

— ~~1g~ 
— f2g1) = 0. (2.6)

dt

This is known as conservation of the Wronskian (Gardner et al., 1967).

Thus far we have studied general properties of the scattering

problem. One may use (1.13) and (1.14) to find solutions and

V2 for given ~~~~. More relevant to the solution of the self-induced

transparency problem is the inverse scattering pr~b1em: given v1
and v2, what coupling func tion F ( t )  produces this particular

v1 and v 2 .
The S.I.T. problem calls for a very special kind of solu-

tion v1(C, i t ) ,  v 2 ( C ,  i t ) .  indeed , C is the parameter describing

the detuning of the two level systems from the carrier frequency

If there is to be no loss, Iv1(~, i t)  I = 1, 1v 2 (r , i t)  I ~ 0
for it + 

~ ; i.e. every two—level system hae to start from the

ground state .before the arrival of the pulse and must return into
- the ground state af ter  passage of the pulse. - Tl?41 ~equi~~meht

t
in

turn calls for a sca tteri.ng ~~~l1 1~41 which t~O ~ef1ec-

ti~~r~ - ‘ 0) for ‘ 
V (~ , t) 1~~or~ ~ny~ 

- 

-

~~ ~~ ~~~ ~~~~~~~~~~~~~ ~~ 

c~’- ’ 
~ ~~~ 

_

1

_ 

‘
~~ ~

I ! ~ 

r , r 
I 1 

! T C~ • 

I )  
c

- ~~~ ~ E- ~~~~ 

- - 

C’ f C 
‘1

- ~~~~~~~~~~~ 
‘

- -

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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There are wells that are capable of doing this. The Schroedinger

equation for a secant hyperbolic well has a continuum of eigen-

states that are traveling waves outside the well and experience

only a phase shift  as they pass through the well (Morse and Fesh-

bach, 1953). In the next section we set up a method for obtaining

the shapes of reflection-free wells for the Zakharov-Shabat equa-

tions. 

- . -~~~~~~~~~~~~~~~~ -- - -~ - -- - -~~~ - -~~~~~~-~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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III. _ The Inverse Scattering Problem

We have pointed out that the solution of self-induced trans-

parency calls for the determination of a reflection-free well. The

inverse scattering theory determines the shape of a scattering well

from the scattering data. The requirement that there be no ref lec— —

tion is suff ic ient  to find shapes of reflection—free wells.

We shall develop the method of inverse scattering by simple

physical reasoning. Consider a given scattering well ~~~(it ) with

U the particular solution fCC, i t )  that approaches the limit as

it + —
~~~

- 

- - lint f(C, T )  = [ )  e~~
CT. (3.1)

- 
- 

T~ie function f (C, T) represents an experiment in which a

wave v1 is incident from it -‘- +~~~, partly coupled to the re-

flected wave v2 and partly transmitted.

- — 
Next consider ~ defined by

~~

_f
1*

which is obtained by time reversal of f. It is independent of f 

-
~~~~

_______ — ~ — - —-‘---—-- -----——- -
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because it is the solution to a different boundary value problem.

Finally, introduce a third solution g(C, it) defined by its

limit at it + +00 :

u r n  g ( C ,  i t )  = e~~ t . ( 3 . 2 )

Figure 26 shows the experiment represented by g. A mode (wave)

is incident from the left  upon the interaction region , part ly re-

flected (coupled to the backward wave v1) and partly transmitted.

g(c, -r ) may be written as a linear superposition of the two inde-

pendent solutions of the (second order) Zakharov-.Shabat equation

system.

g(~~, t)  = a(ç) f(C, T )  + b(C) ~ (C, i t ) .  (3.3)

The inverse scattering theory enables one to construct the scat-

tering well from the information on b(C) and a(C). We shall

now go through the derivation in a “physical” way, Consider the

scattering experiments represented by g, f, and f. Remember

.~~, 
F(<~~w/v) is interpreted as a propagation constant of a disper-

sion free wave and hence is proportional to the frequency. g (C, i t )

is , at first, defined on the real C—axis—— for a steady state

scattering experiment. For a given well, the function g(~ , T) 

-— 
~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -~~ - 
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may be continued analytically into the upper nalf of the complex

C—plane. This can be interpreted simply in terms of an experiment

using a wave source (of v2) on the lef t side of the well with an

amplitude growing exponentially with time. Each point in the upper

half of the C-plane may be thought to have associated with it the

space ( T - ~) dependence of the incident transmitted and scattered

waves. We show such plots schematically in Fig. 27. Fig. 27a shows

g(C, it) for a point in the upper half of the C—plane . Shown are

the space ( i t - )  dependences of (cL) the well E ( i t ) ,  (
~ ) the

exciting wave g2 of dependence u r n  exp iCT , and (y) the reflected

wave g1 which is caused by re f lection of the well and is confined

to a finite region of space.

As Im ~ is increased , the incident wave decays sore steeply

with increasing -r , and as c i + 00 the reflected wave g1 van-

ishes. Indeed , the fa ster the increase with time, (the greater

Im C), the shorter the duration of the interaction and the weaker

is the excitation of the reflection g1. In the limit of Im(C) +

the reflected wave g1 decreases to zero. The same can be said

about a spatially very rapidly vary ing wave , Id very large. The

reflection vanishes not only for Im(C) + ~ but for RI  in

- - general. Fig. 5b shows an analogous schematic sketch of the exper-

iment described by fCC, it ) a wave incident upon the well from the

right. Like in the case of g (c, T), the reflection f 2(C, i t )

becomes weaker and weaker as Id becomes larger and larger and

vanishes in the limit id + 00 

—~~~~~~ -: ~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~ --.-~-- -~~~~~
--_

~
_ - - —.- - 
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If the well ~i-r) is chosen “deep and wide enough ”, the

feedback provided by the well will permit trapped solutions growing

with time at a characteristic rate Im Ck (> 0), where CIc may

assume one or more discrete values, depending upon the depth and

width of the well. A trapped solution is one for which there is

no external excitation g2 
- -  0 as T -‘ ~~~~~~~ The excitation within

the well decays away from the well in both directions. With a fixed

amplitude of g2 
on the right hand side of the well , the amplitude

of the excitation within the well remains f inite for C +

Indeed , in order to keep the excitation amplitude of tne well

f ixed when the “resonance ” , represented by the trapped solution ,

is approached , the source amplitude has to decrease until it vanishes

at C = dIc. The trapped solution is shown schematically in Fig. 6.

Power is carried out of the well to supply the increasing energy

storage outside the well-- the energy being supplied by the growth

of positive energy in g2 at the expense of the negative energy in

via the instability within the well. The same applies to

f ( C , it) and indeed g(r , it) and f(d, i t)  cease to be linearly

independent at C = because they both describe the same trapped

solution .

— 
Finally consider ?( c ,  it). For rea] ç, the function i s the

time reversed version of f (compare Fig. 25b) . Before we con-

tinue it analytically into the upper half plane we must understand

the physical situation represented by the solution f. Accouding

to Fig. 25b, waves are incident from both sides of’ the w i- li. PhI- 

~—- - - - - - - -~~~~~~~~~ - -- --- U— - j~~~~
- 

~~
- - 

~~~~~~~~~~~~~~~~~~ -~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~
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well is excited by two sources. The sources are so phased that the

“reflected ” wave on the left hand side is suppressed . This is

the solution that is to be continued analytically into the upper

half plane. A sketch is shown in Fig. 27c. In the lower half

plane ~(c , it) represents an excitation of the well by two sources

decaying exponentially in time , again phased so as to cancel the

wave as it - ‘- -°°. (See Fig. 27d.) Trapped solutions exist in

the lower half plane. Indeed solutions of the Zakharov Shabat

equations occur in complex conjugate pairs. Therefore ? must

contain the trapped solution decaying in time , at c = Ck* in the

lower half C-plane . f2 is constrained on the left hand side of

the well , when c approaches Ck* ; no singularity occurs in f

because a decaying trapped solution receives power from the energy

in the collapsing tails outside the well and the condition

* ~~~~~~ in the limit ~ + —~, imparts the tail with a

finite amplitude.

We are now ready to exploit the scattering (thought) experi-

ments represented by g, f and ¶, through the use of complex

function theory. The function g(C, i t )  exp - icr is well behaved

throughout the entire upper half C-plane ; as i d + it ap-

proaches (~]. b (z) in turn approaches lim b(d) = 1, because
- 

RHo -

in this limit no reflection occurs and f becomes equal to g

asymptotically. We multiply (3.3) on both sides by

L 

(exp — iCT)/b(d). (3.4)



90

In the upper half plane , the left hand side has poles at d = dk
in the upper half plane and approaches [

~
] in the limit H ~

Because the left hand side is equal to the right hand side, the

latter has the same poles and same limiting behavior in the upper

C—plane.

Next, we define the function ?( c ,  it) exp — i Cr  in the lower

hal f plane. This function in turn approaches [~ ] as -
~~

and has no singularities. The discontinuity between the two

functions in the two half planes on the real C-axis , C =

is:

a(~ )
f(~~, T) exp — i~ T .

b(~ )

We appeal next to complex function theory. If a complex function

is well behaved throughout the entire complex C-plane with the

exception of a finite number of poles and a discontinuity on the

real axis then the function can be written in terms of a sum of

contributions of the poles and in terms of an integral representing

the discontinuity along the real axis. This property of complex

• functions is in one to one correspondence with potential theory

in two dimensions. If a two dimensional electrostatic potential

p has a f in i te  number of point (line) charge sources and has certain

- 
I discontinuities along a curve (surface), these discontinuities

- ~~~—~--—-—-----———~~~~ . - ~~~~~~~~~~ - —~—~ - —~ - - - -- —~~~ - - —4
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being produced by surface sources, then the potential may be found

using the appropriate Green ’s function.

The formal evaluation is presented in Zakharov—Shabat (1972).

Here we shall confine ourselves to the special case of a re flection

free well , a(~~) 
+ 0. Then

~ (C, it) exp — 1CT = ~(c , i t)  exp — icr (3.5)
b(d)

everywhere. Strictly speaking , a(~~) cannot be set equal to zero,

it can only be made to approach zero, because otherwise the two

sides of (3.5) cannot be balanced when RI + ~ as can be seen

from the asymptotic behaviors of g(t~, it), f(
~~, i t)  and r ( c ,  it).

The on ly singularities lef t are the zeros of b(C ) where

t )  becomes proportional to Ck f(Ck, it). Suppose g(d, it)/

b(C) has simple singularities at Ck~ 
so that it may be written ,

taking advantage of the fact that ~~~~~ i t)  f(C ks it) at C = ‘k’

N C f ( t, , T) 0

— 

g ( ç ,  ‘-~~ exp — iCT  
k k exp — iC

k
T + . (3.6)

b ( r )  k = 1 — dk 1

Then , from (3.5)

N 
~k ~~~k’ 

i t )  ( 0 1
- — exp — id k

-r = f(~~, i t )  exp — icr — 
-

k = l  C
~~~ Ck


